Example 10 Find the general solution of the differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$.

Solution Since $1 + y^2 \neq 0$, therefore separating the variables, the given differential equation can be written as

$$\frac{dy}{1+y^2} = \frac{dx}{1+x^2} \qquad ... (1)$$

Integrating both sides of equation (1), we get

$$\int \frac{dy}{1+y^2} = \int \frac{dx}{1+x^2}$$
$$\tan^{-1} y = \tan^{-1} x + C$$

or

which is the general solution of equation (1).

Example 11 Find the particular solution of the differential equation $\frac{dy}{dx} = -4xy^2$ given that y = 1, when x = 0.

Solution If $y \neq 0$, the given differential equation can be written as

$$\frac{dy}{y^2} = -4x \ dx \qquad \dots (1)$$

Integrating both sides of equation (1), we get

$$\int \frac{dy}{y^2} = -4\int x \, dx$$

$$-\frac{1}{y} = -2x^2 + C$$

$$y = \frac{1}{2x^2 - C} \qquad \dots (2)$$

or

or

Substituting y = 1 and x = 0 in equation (2), we get, C = -1.

Now substituting the value of C in equation (2), we get the particular solution of the

given differential equation as $y = \frac{1}{2x^2 + 1}$.

Example 12 Find the equation of the curve passing through the point (1, 1) whose differential equation is $x \, dy = (2x^2 + 1) \, dx \, (x \neq 0)$.

394 MATHEMATICS

Solution The given differential equation can be expressed as

$$dy^* = \frac{2x^2 - 1}{x} dx^*$$
$$dy = \left(2x + \frac{1}{x}\right) dx \qquad \dots (1)$$

or

Integrating both sides of equation (1), we get

$$\int dy = \int \left(2x + \frac{1}{x}\right) dx$$

$$y = x^2 + \log|x| + C \qquad \dots (2)$$

or

Equation (2) represents the family of solution curves of the given differential equation but we are interested in finding the equation of a particular member of the family which passes through the point (1, 1). Therefore substituting x = 1, y = 1 in equation (2), we get C = 0.

Now substituting the value of C in equation (2) we get the equation of the required curve as $y = x^2 + \log |x|$.

Example 13 Find the equation of a curve passing through the point (-2, 3), given that

the slope of the tangent to the curve at any point (x, y) is $\frac{2x}{y^2}$.

Solution We know that the slope of the tangent to a curve is given by $\frac{dy}{dx}$.

so,

$$\frac{dy}{dx} = \frac{2x}{y^2} \qquad \dots (1)$$

Separating the variables, equation (1) can be written as

$$y^2 dy = 2x dx \qquad \dots (2)$$

Integrating both sides of equation (2), we get

$$\int y^2 dy = \int 2x \, dx$$
$$\frac{y^3}{3} = x^2 + C \qquad \dots (3)$$

or

* The notation $\frac{dx}{dx}$ due to Leibnitz is extremely flexible and useful in many calculation and formal transformations, where, we can deal with symbols dy and dx exactly as if they were ordinary numbers. By treating dx and dy like separate entities, we can give neater expressions to many calculations.

Refer: Introduction to Calculus and Analysis, volume-I page 172, By Richard Courant, Fritz John Spinger – Verlog New York.

Substituting x = -2, y = 3 in equation (3), we get C = 5.

Substituting the value of C in equation (3), we get the equation of the required curve as

$$\frac{y^3}{3} = x^2 + 5$$
 or $y = (3x^2 + 15)^{\frac{1}{3}}$

Example 14 In a bank, principal increases continuously at the rate of 5% per year. In how many years Rs 1000 double itself?

Solution Let P be the principal at any time t. According to the given problem,

$$\frac{dp}{dt} = \left(\frac{5}{100}\right) \times \mathbf{P}$$
$$\frac{dp}{dt} = \frac{\mathbf{P}}{20} \qquad \dots (1)$$

or

separating the variables in equation (1), we get

$$\frac{dp}{P} = \frac{dt}{20} \qquad \dots (2)$$

... (3)

Integrating both sides of equation (2), we get

$$\log P = \frac{t}{20} + C_1$$
$$P = e^{\frac{t}{20}} \cdot e^{C_1}$$

or

or

Now

Substituting the values of P and t in (3), we get C = 1000. Therefore, equation (3), gives

 $P = C e^{\overline{20}}$ (where $e^{C_1} = C$)

P = 1000, when t = 0

$$P = 1000 e^{\frac{t}{20}}$$

Let *t* years be the time required to double the principal. Then

$$2000 = 1000 e^{\frac{t}{20}} \implies t = 20 \log_e 2$$

EXERCISE 9.4

For each of the differential equations in Exercises 1 to 10, find the general solution:

1.
$$\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}$$
 2. $\frac{dy}{dx} = \sqrt{4 - y^2} \ (-2 < y < 2)$

/1